

INTELLIGENZA ARTIFICIALE E TECNOLOGIA INDOSSABILE PER LA DIAGNOSI PRECOCE DELLA TROMBOSI VENOSA PROFONDA: UN PROGETTO EUROPEO IN CORSO

Autori: G. Mastrangelo (1), L. Lombardi (1), D. Colaizzo (1), V. Palazzo (1), G. Drosatos (2), S. Didaskalou (2), E. Grandone (1), E. Kaldoudi (2) and the Thrombus+ Consortium

ENTI DI APPARTENENZA

1 FONDAZIONE IRCCS CASA SOLLIEVO DELLA SOFFERENZA, SAN GIOVANNI ROTONDO (FG)

2 ATHENA RESEARCH CENTER, XANTHI GREECE

INTRODUZIONE

La trombosi venosa profonda è una condizione in cui si formano coaguli di sangue nelle vene profonde, tipicamente negli arti inferiori, ostruendo il flusso sanguigno.. Gli attuali metodi diagnostici, come l'esame eco-color-Doppler, richiedono operatori qualificati e non consentono un monitoraggio continuo.

OBIETTIVO

Il progetto ThrombUS+ mira a rivoluzionare la diagnosi di TVP attraverso un dispositivo diagnostico indossabile basato sull'intelligenza artificiale che consente il monitoraggio continuo presso il punto di cura per i pazienti ad alto rischio.

METODI E MATERIALI

formazione di coaguli (figura1)

Questo nuovo dispositivo integra:

Tecnologia ecografica indossabile per l'imaging vascolare in tempo reale;

Pletismografia a impedenza per valutare le variazioni del volume ematico; Reografia a riflessione luminosa per monitorare la

RISULTATI

Finora, il progetto ha sviluppato con successo un prototipo del dispositivo indossabile e ha avviato quattro studi clinici per convalidarne l'efficacia.

- Studio A (in corso): raccoglie immagini ecografiche marcate e segnali pletismografici da 3.000 pazienti sottoposti a scansioni di TVP di routine per addestrare modelli di intelligenza artificiale. L'analisi delle immagini sarà implementata tramite una rete neurale convoluzionale basata sull'architettura U-Net. (figura 2)
- 2. Studio B (in corso): ha l'obiettivo di raccogliere e creare set di dati di immagini ecografiche e pletismografiche marcate da pazienti sottoposti a ecografie di routine per sospetta trombosi venosa profonda e testerà il primo prototipo rispetto ai metodi convenzionali di rilevamento della TVP.
- 3. **Studio C:** controllato in doppio cieco con 150-200 pazienti, valuterà il design, la sicurezza, la sensibilità, l'accettabilità da parte del paziente, la funzionalità e l'usabilità del software del dispositivo indossabile rispetto agli ultrasuoni tradizionali.
- 4. **Studio di fattibilità** iniziale: una sperimentazione che coinvolge 50-100 pazienti post-operatori per valutare la progettazione, la sicurezza, l'usabilità e l'accettazione del dispositivo da parte dei pazienti prima di sperimentazioni cliniche più ampie.

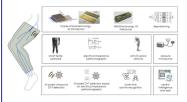


Figura 1: Panoramica dei dispositive indossabili proposti

Figura 2: Immagine eco-color-Doppler di trombosi della gunzione safeno-femorale

CONCLUSIONI

Il progetto rappresenta una svolta rivoluzionaria nel rilevamento della TVP, passando dalla diagnostica operatore-dipendente a soluzioni indossabili e autonome basate sull'intelligenza artificiale. Esso ha il potenziale per trasformare la gestione della TVP, rendendo la diagnosi precoce più accessibile, efficiente e salvavita.

RIFERIMENTI BIBLIOGRAFICI

Kaldoudi E et al. Towards Wearable Continuous Point-of-Care Monitoring for Deep VeinThrombosis of the Lower Limb. In: Jarm, T., Šmerc, R., Mahnič-Kalamiza, S. (eds) 9th European Medical and Biological Engineering Conference. EMBEC 2024. IFMBE Proceedings, vol 113. Springer, Cham.

DICHIARAZIONE DI CONFLITTO DI INTERESSI

Gli Autori dichiarano l'assenza di conflitti di interesse.

INFORMAZIONI DI CONTATTO

HTTPS://THROMBUS.EU

PROJECT COORDINATOR: ELENI KALDOUI (KALDOUDI@ATHENARC.GR)

